The stable regularity lemma revisited
نویسندگان
چکیده
We prove a regularity lemma with respect to arbitrary Keisler measures μ on V , ν on W where the bipartite graph (V,W,R) is definable in a saturated structure M̄ and the formula R(x, y) is stable. The proof is rather quick, making use of local stability theory. The special case where (V,W,R) is pseudofinite, μ, ν are the counting measures, and M̄ is suitably chosen (for example a nonstandard model of set theory), yields the stable regularity theorem of [3], though without explicit bounds or equitability.
منابع مشابه
Szemerédi's regularity lemma revisited
Szemerédi’s regularity lemma is a basic tool in graph theory, and also plays an important role in additive combinatorics, most notably in proving Szemerédi’s theorem on arithmetic progressions [19], [18]. In this note we revisit this lemma from the perspective of probability theory and information theory instead of graph theory, and observe a slightly stronger variant of this lemma, related to ...
متن کاملHow to avoid using the Regularity Lemma: Pósa's conjecture revisited
In this paper we investigate how the use of the Regularity Lemma and the Blow-up Lemma can be avoided in certain extremal problems of dense graphs. We present the ideas for the following well-known Pósa conjecture on the square of a Hamiltonian cycle. In 1962 Pósa conjectured that any graph G of order n and minimum degree at least 3n contains the square of a Hamiltonian cycle. In an earlier pap...
متن کاملModel Theory and Hypergraph Regularity
1. Ultrafilters, ultraproducts and ultralimits 1 1.1. Filters and ultrafilters 1 1.2. Ultralimits 2 1.3. Some model-theoretic notation 3 1.4. Ultraproducts of first-order structures 3 1.5. References 6 2. Graph regularity and measures on ultraproducts 6 2.1. Szemerédi’s regularity lemma 6 2.2. Finitely additive measures 7 2.3. Obtaining countable additivity 9 2.4. Integration for charges (signe...
متن کاملStable Regularity for Relational Structures
We generalize the stable graph regularity lemma of Malliaris and Shelah to the case of finite structures in finite relational languages, e.g., finite hypergraphs. We show that under the model-theoretic assumption of stability, such a structure has an equitable regularity partition of size polynomial in the reciprocal of the desired accuracy, and such that for each k-ary relation and k-tuple of ...
متن کاملRegularity Lemmas for Stable Graphs
We develop a framework in which Szemerédi’s celebrated Regularity Lemma for graphs interacts with core model-theoretic ideas and techniques. Our work relies on a coincidence of ideas from model theory and graph theory: arbitrarily large half-graphs coincide with model-theoretic instability, so in their absence, structure theorems and technology from stability theory apply. In one direction, we ...
متن کامل